THE MOLE AND AVOGADRO'S NUMBER

Name _____

One mole of a substance contains Avogadro's Number (6.02 x 1023) of molecules.

How many molecules are in the quantities below?

- 1. 2.0 moles
- 2. 1.5 moles
- 3. 0.75 mole
- 4. 15 moles
- 5. 0.35 mole

How many moles are in the number of molecules below?

- 1. 6.02 x 10²³
- 2. 1.204 x 10²⁴
- 3. 1.5 x 10²⁰
- 4. 3.4 x 1026
- 5. 7.5 x 10¹⁹

AND THE RESIDENCE OF THE PROPERTY OF THE PROPE

MOLES AND MASS	Name
Determine the number of moles in each of	the quantities below.
1. 25 g of NaCl	
2. 125 g of H ₂ SO ₄	
3. 100. g of KMnO ₄	
4. 74 g of KCI	
5. 35 g of CuSO ₂ •5H ₂ O	
Determine the number of grams in each of 1. 2.5 moles of NaCl	the quantities below.
2. 0.50 moles of H ₂ SO ₄	
3. 1.70 moles of KMnO ₄	
4. 0.25 moles of KCI	
5. 3.2 moles of CuSO ₄ •5H ₂ O	
4 7 2	

THE MOLE AND VOLUME	Name

Forgases at STP (273 K and 1 atm pressure), one mole occupies a volume of 22.4 L. What volume will the following quantities of gases occupy at STP?

- 1. 1.00 mole of H₂
- 2, 3.20 moles of O₂
- 3, 0.750 mole of N₂
- 4. 1.75 moles of CO₂
- 5. 0.50 mole of NH₃
- 6 5.0 g of H₂
- 7. 100. g of O₂
- 8, 28.0 g of N₂
- 9. 60. g of CO₂
- 10. 10. g of NH₃

-	ve the following problems.	
1.	How many grams are there in 1.5×10^{25} molecules of CO_2 ?	
2.	What volume would the CO ₂ in Problem 1 occupy at STP?	
3.	A sample of NH ₃ gas occupies 75.0 liters at STP. How many mole	cules is this?
4.	What is the mass of the sample of NH ₃ in Problem 3?	
	What is the mass of the sample of $\mathrm{NH_3}$ in Problem 3? How many atoms are there in 1.3×10^{22} molecules of $\mathrm{NO_2}$?	
5.		container?

PERCENT!	AGE	COMP	OSITION
I BIL O BITTIP	-	COMMI	

Name _____

Determine the percentage composition of each of the compounds below.

1. KMnO

K = ____

Mn = ____

0 = ____

2. HCI

H = _____

CI = _____

Mg(NO₃)₂

Mg = _____

N = ____

0 = _____

4. (NH₄)₃PO₄

N = ____

H = _____

P = _____

0 = ____

Al₂(SO₄)₃

AI = _____

S = _____

0 =

Solve the following problems.

How many grams of oxygen can be produced from the decomposition of 100. g of KCIO,?

How much iron can be recovered from 25.0 g of Fe₂O₃?

How much silver can be produced from 125 g of Ag₂S? ______

DETERMININ	1G
EMPIRICAL	FORMULAS

Name _____

What is the empirical formula (lowest whole number ratio) of the compounds below?

1.	75% carbon, 25% hydrogen	
2.	52.7% potassium, 47.3% chlorine	
3.	22.1% aluminum, 25.4% phosphorus, 52.5% oxygen	
4.	13% magnesium, 87% bromine	
5.	32.4% sodium, 22.5% suifur, 45.1% oxygen	
6.	25.3% copper, 12.9% sulfur, 25.7% oxygen, 36.1% water	
		(<u>1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-</u>

33

g

ıl Fair, Ir Chemistry IF8766

55

@Instructional Fair, Inc.

DETERMINING MOLECULAR FORMULAS (TRUE FORMULAS)

Name		
4 5	 	

Solve the problems below.

- The empirical formula of a compound is NO₂. Its molecular mass is 92 g/mol. What is its molecular formula?
- The empirical formula of a compound is CH₂. Its molecular mass is 70 g/mol. What is its molecular formula?
- A compound is found to be 40.0% carbon, 6.7% hydrogen and 53.5% oxygen. Its molecular mass is 60. g/mol. What is its molecular formula?
- 4. A compound is 64.9% carbon, 13.5% hydrogen and 21.6% oxygen. Its molecular mass is 74 g/mol. What is its molecular formula?
- 5. A compound is 54.5% carbon, 9.1% hydrogen and 36.4% oxygen. Its molecular mass is 88 g/mol. What is its molecular formula?